Table 1. Atomic parameters

$B_{\text {eq }}=\frac{1}{3} \sum_{l} \sum_{j} B_{i j} a_{i}^{*} a_{j}^{*} \mathrm{a}_{j} \cdot \mathrm{a}_{j}$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
U	0.18863 (2)	$0 \cdot 11824$ (2)	0.35897 (1)	3.339 (6)
Br	0.20423 (9)	0.32988 (8)	0.31666 (3)	6.40 (3)
Sil	-0.04814 (17)	-0.12204 (21)	0.39988 (7)	4.88 (6)
Si2	0.02958 (18)	$0 \cdot 10755$ (20)	0.23520 (7)	4.59 (6)
Si3	0.44003 (18)	-0.08801 (18)	0.41748 (7)	4.79 (7)
Si4	0.30450 (20)	0.36631 (21)	0.44719 (8)	5.68 (7)
N1	-0.0751 (6)	0.2705 (6)	0.39312 (20)	5.1 (2)
N2	0.4408 (5)	$0 \cdot 1163$ (6)	0.28308 (21)	5.5 (2)
C1	-0.0078 (6)	0.0171 (6)	0.32377 (25)	3.9 (2)
C2	0.0352 (6)	-0.0609 (6)	0.35467 (23)	$3 \cdot 9$ (2)
C3	0.1379 (6)	-0.0997 (6)	0.33657 (25)	$4 \cdot 1$ (2)
C4	$0 \cdot 1548$ (6)	-0.0474 (6)	0.29623 (24)	3.7 (2)
C5	0.0640 (6)	0.0292 (6)	0.28696 (22)	3.7 (2)
C6	0.3734 (6)	$0 \cdot 1462$ (7)	0.41853 (24)	$4 \cdot 2$ (2)
C7	0.3434 (6)	0.0323 (6)	0.42288 (22)	3.9 (2)
C8	$0 \cdot 2362$ (7)	0.0345 (7)	0.44315 (24)	4.0 (2)
C9	0.2049 (6)	$0 \cdot 1444$ (6)	0.45058 (22)	$4 \cdot 2$ (2)
C10	0.2899 (6)	0.2171 (6)	0.43543 (22)	3.9 (2)
C11	0.0051 (7)	0.2264 (6)	0.38401 (25)	4.7 (2)
C12	0.3708 (6)	$0 \cdot 1122$ (8)	0.30743 (25)	5.4 (2)
C13	-0.1774 (8)	0.3305 (9)	0.4045 (3)	$6 \cdot 8$ (3)
C14	0.5317 (7)	0.1299 (7)	0.25126 (29)	5.7 (3)
C15	-0.1787 (7)	-0.1862 (8)	0.37371 (28)	6.8 (3)
C16	-0.0956 (8)	-0.0163 (8)	0.44006 (28)	$7 \cdot 0$ (3)
C17	0.0324 (8)	$\bigcirc 0.2327$ (8)	0.4300 (3)	8.1 (3)
C18	0.1632 (7)	0.1462 (7)	0.20699 (26)	6.3 (3)
C19	-0.0592 (7)	0.2296 (7)	0.24854 (27)	$6 \cdot 5$ (3)
C20	-0.0574 (8)	0.0197 (8)	$0 \cdot 19556$ (27)	$7 \cdot 3$ (3)
C21	0.4795 (8)	-0.1160 (8)	0.35979 (28)	7.6 (3)
C22	0.5758 (7)	-0.0600 (9)	0.4497 (3)	$7 \cdot 8$ (3)
C23	0.3701 (9)	-0.2108 (8)	0.4393 (4)	10.1 (4)
C24	0.3462 (10)	0.3811 (9)	0.5074 (3)	10.0 (4)
C25	0.1702 (9)	0.4444 (8)	0.4381 (4)	8.9 (4)
C26	0.4186 (9)	0.4271 (8)	0.4141 (4)	$10 \cdot 1$ (4)
C27	-0.1685 (12)	0.4458 (12)	0.3910 (5)	14.2 (7)
C28	-0.2720 (11)	0.2769 (14)	0.3779 (5)	15.3 (7)
C29	-0.1970 (12)	$0 \cdot 3198$ (13)	0.4513 (4)	14.2 (6)
C30	0.5678 (8)	$0 \cdot 2492$ (8)	0.2525 (3)	7.7 (4)
C31	0.4829 (9)	0.0971 (10)	0.2059 (3)	10.2 (4)
C32	0.6292 (9)	0.0546 (9)	0.2667 (4)	10.4 (5)
H1	-0.079 (5)	0.055 (5)	0.3259 (20)	4.2 (16) \dagger
H2	0.183 (5)	-0.157 (5)	0.3478 (19)	3.9 (16) \dagger
H3	0.208 (5)	-0.059 (5)	$0 \cdot 2780$ (18)	2.5 (13) \dagger
H4	0.440 (5)	0.171 (5)	0.4059 (19)	3.6 (15) \dagger
H5	0.202 (5)	-0.029 (5)	0.4498 (19)	2.8 (15) \dagger
H6	$0 \cdot 134$ (5)	$0 \cdot 166$ (5)	0.4625 (18)	3.0 (13) \dagger
$\dagger B_{\text {iso }}$.				

Related literature. The $\mathrm{U}^{\text {III }}$ dimer, $\left[\mathrm{UBr}\left\{\mathrm{C}_{5} \mathrm{H}_{3}-\right.\right.$ $\left.\left.\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]_{2}\right\}_{2}\right]_{2}$, has been synthesized and structurally characterized (Blake, Lappert, Taylor, Atwood \&

Table 2. Selected distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Cpl}-\mathrm{U}$	2.520	C5-U	2.787 (7)
Cp2-U	2.514	C6-U	2.784 (7)
$\mathrm{Br}-\mathrm{U}$	2.8761 (10)	C7-U	2.798 (7)
C11-U	2.662 (8)	C8--U	2.769 (7)
C12-U	1.697 (7)	C9-U	2.777 (7)
C1-U	2.788 (7)	C10-U	2.819 (7)
C2-U	2.825 (7)	C11-N1	1.128 (8)
C3-U	2.789 (7)	C12-N2	$1 \cdot 126$ (8)
C4-U	2.777 (7)		
$\mathrm{Br}-\mathrm{U}-\mathrm{C} 11$	75.65 (17)	C12-U-Cpl	86.97
$\mathrm{Br}-\mathrm{U}-\mathrm{C} 12$	72.73 (20)	C12-U-Cp2	99.22
C11-U-C12	148.09 (25)	$\mathrm{Cpl}-\mathrm{U}-\mathrm{Cp} 2$	129.08
$\mathrm{Br}-\mathrm{U}-\mathrm{Cp} 1$	118.73	C11-N1-C13	178.4 (9)
$\mathrm{Br}-\mathrm{U}-\mathrm{Cp} 2$	112.16	C12-N2-C14	176.2 (10)
C11-U-Cpl	94.41	$\mathrm{U}-\mathrm{C} 11-\mathrm{N} 1$	177.1 (7)
C11-U-Cp2	96.44	$\mathrm{U}-\mathrm{C} 12-\mathrm{N} 2$	$173 \cdot 1$ (7)

Cp 1 and Cp 2 represent the centers of cyclopentadienyl rings $\mathrm{C} 1-\mathrm{C} 5$ and C6-C10 respectively.

Zhang, 1987). The ability of isocyanides to act as good donor ligands toward uranium metal centers has been previously observed (Kanellakopulos, Fischer, Dornberger \& Baumgartner, 1970).

Helpful discussions with Professor R. A. Andersen are appreciated. This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy, under contract No. DE-AC03-76SF-F00098.

References

Blake, P. C., Lappert, M. F., Taylor, R. G., Atwood, J. L. \& Zhang, H. (1987). Inorg. Chim. Acta, 139, 13-20.
International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2, pp. 71-102. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Kanellakopulos, B., Fischer, E. O., Dornberger, E. \& baumgartner, F. (1970). J. Organomet. Chem. 24, 507-514.

Acta Cryst. (1989). C45, 1222-1224

Structure of $\left[\mathbf{A g}\left(\mathbf{P P h}_{3}\right)_{4}\right] \mathrm{PF}_{6}$

By F. Albert Cotton* and Rudy L. Luck
 Department of Chemistry and Laboratory for Molecular Structure and Bonding, Texas A\&M University, College Station, TX 77843, USA

(Received 18 November 1988; accepted 24 January 1989)
Abstract. Tetrakis(triphenylphosphine)silver hexa- trigonal, $R \overline{3}, \quad a=14.330(6), \quad b=14.330$ (6), $c=$ fluorophosphate, $\left[\mathrm{Ag}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}_{4}\right] \mathrm{PF}_{6}, M_{r}=1302.01$,

[^0]0108-2701/89/081222-03\$03.00
51.57 (1) $\AA, \quad V=9171(5) \AA^{3}, \quad Z=6, \quad D_{x}=$ $1.414 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \alpha)=0.71073 \AA, \quad \mu=$ $5.139 \mathrm{~cm}^{-1}, \quad F(000)=4008, T=292 \mathrm{~K}, R=0.0401$
for 2687 unique observed reflections. The anion adopts $\overline{3}$ symmetry and the metal atom lies on a special position of symmetry 3 coordinated by two types of ligands. The \mathbf{P} atom of one of the triphenylphosphine ligands is positioned on the same 3 axis as the metal and thus one of the phenyl rings is crystallographically independent. One other triphenylphosphine ligand situated off the axis completes the asymmetric unit for the cation.

Experimental. The title compound, which can be synthesized directly by mixing four equivalents of PPh_{3} with $\mathrm{Ag}\left(\mathrm{PF}_{6}\right)$, was unexpectedly obtained in a reaction of $\quad \mathrm{ReCl}_{4}\left(\mathrm{PPh}_{3}\right)_{2}, \quad \mathrm{Mo}\left(\eta^{6}-\mathrm{PhPMe}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3} \quad$ and $\mathrm{Ag}\left(\mathrm{PF}_{6}\right)$ in benzene. The addition of hexane to this solution resulted in the formation of white crystals; one of an irregular geometry of dimensions $0.3 \times 0.4 \times$ 0.4 mm was mounted on a glass fiber. Cell constants were derived from least-squares refinement based on 25 reflections having $25<2 \theta<35^{\circ}$. Intensity data were collected at variable scan speeds ($2-20^{\circ} \mathrm{min}^{-1}$), which depended on a pre-scan count with a skip option, using the ω-scan technique with $4 \leq 2 \theta \leq 55^{\circ}$ ($h=0$ to 19 , $k=0$ to $19, l=-68$ to 68) on a Nicolet $P 3 / \mathrm{F}$ equivalent diffractometer using graphite-monochromated Mo $K \alpha$ radiation. Three standard reflections ($0,6,24,5,3, \overline{16}, 6,2, \overline{20}$), measured every 100 reflections, showed small ($<0 \cdot 2 \%$) random variations. Data were corrected for Lorentz and polarization effects, and for absorption effects based on ψ scans using the empirical method of North, Phillips \& Mathews (1968); $T_{\min }=0.9735, T_{\max }=0.9992$. There are 84274/12 reflections in the sphere; however, due to the skip option and the insertion of an index restriction after 945 reflections were collected ($-h+k+l=2 n$ only present), only 3906 data were collected and averaged to 2687 unique observed reflections ($F_{o}{ }^{2}>$

Fig. 1. An ORTEP drawing (Johnson, 1965) of $\left[\mathrm{Ag}\left(\mathrm{PPh}_{3}\right)_{4}\right]^{+}$ showing a partial atomic numbering scheme. Thermal ellipsoids have been drawn at the 50% probability level and spheres have been drawn with arbitrary radii.

Table 1. Positional and equivalent isotropic thermal parameters and their e.s.d.'s for $\left[\mathrm{Ag}\left(\mathrm{PPh}_{3}\right)_{4}\right] \mathrm{PF}_{6}$
The equivalent isotropic displacement parameter is: $\frac{1}{3}\left[a^{2} a^{* 2} B_{11}+\right.$ $b^{2} b^{* 2} B_{22}+c^{2} c^{* 2} B_{33}+2 a b(\cos \gamma) a^{*} b^{*} B_{12}+2 a c(\cos \beta) a^{*} c^{*} B_{13}+$ $2 b c(\cos \alpha) b^{*} c^{*} B_{23}$.

	\boldsymbol{x}	y	\boldsymbol{z}	$\boldsymbol{B}_{\mathrm{eq}}\left(\mathrm{A}^{2}\right)$
Ag	0.667	0.333	$0.08521(1)$	$2.845(6)$
$\mathrm{P}(1)$	$0.52472(6)$	$0.38856(6)$	$0.10227(2)$	$2.61(2)$
$\mathrm{P}(2)$	0.667	0.333	$0.03404(3)$	$2.54(2)$
$\mathrm{C}(111)$	$0.5188(3)$	$0.4010(3)$	$0.13730(7)$	$3.13(8)$
$\mathrm{C}(112)$	$0.4244(3)$	$0.3732(4)$	$0.15037(9)$	$5.4(1)$
$\mathrm{C}(113)$	$0.4271(4)$	$0.3938(5)$	$0.1768(1)$	$7.6(2)$
$\mathrm{C}(114)$	$0.5216(5)$	$0.4380(4)$	$0.19016(9)$	$6.9(2)$
$\mathrm{C}(115)$	$0.6149(4)$	$0.4629(4)$	$0.17758(9)$	$5.3(1)$
$\mathrm{C}(116)$	$0.6139(3)$	$0.4453(3)$	$0.15127(8)$	$4.1(1)$
$\mathrm{C}(121)$	$0.3865(2)$	$0.2869(3)$	$0.09347(7)$	$2.76(8)$
$\mathrm{C}(122)$	$0.3557(3)$	$0.1787(3)$	$0.09714(9)$	$4.1(1)$
$\mathrm{C}(123)$	$0.2560(4)$	$0.0982(3)$	$0.0892(1)$	$5.2(1)$
$\mathrm{C}(124)$	$0.1855(3)$	$0.1237(4)$	$0.07764(9)$	$4.9(1)$
$\mathrm{C}(125)$	$0.2133(3)$	$0.2299(3)$	$0.07433(9)$	$4.8(1)$
$\mathrm{C}(126)$	$0.3134(3)$	$0.3107(3)$	$0.08226(8)$	$3.69(9)$
$\mathrm{C}(131)$	$0.5322(2)$	$0.5124(3)$	$0.09041(7)$	$2.80(8)$
$\mathrm{C}(132)$	$0.5687(3)$	$0.5458(3)$	$0.06537(8)$	$3.70(9)$
$\mathrm{C}(133)$	$0.5694(3)$	$0.6344(3)$	$0.05461(8)$	$4.5(1)$
$\mathrm{C}(134)$	$0.5335(3)$	$0.6911(3)$	$0.06885(9)$	$4.8(1)$
$\mathrm{C}(135)$	$0.4984(4)$	$0.6611(3)$	$0.0937(1)$	$5.2(1)$
$\mathrm{C}(136)$	$0.4980(3)$	$0.5724(3)$	$0.10473(8)$	$4.4(1)$
$\mathrm{C}(211)$	$0.5401(3)$	$0.2365(3)$	$0.01875(7)$	$2.77(8)$
$\mathrm{C}(212)$	$0.4452(3)$	$0.2277(3)$	$0.02814(8)$	$3.53(9)$
$\mathrm{C}(213)$	$0.3477(3)$	$0.1575(3)$	$0.01692(9)$	$4.4(1)$
$\mathrm{C}(214)$	$0.3436(3)$	$0.0953(4)$	$-0.0039(1)$	$4.9(1)$
$\mathrm{C}(215)$	$0.4362(4)$	$0.1037(4)$	$-0.01338(9)$	$5.2(1)$
$\mathrm{C}(216)$	$0.5347(3)$	$0.1733(3)$	$-0.00222(8)$	$4.0(1)$
$\mathrm{P}(11)$	0.000	0.000	0.000	$3.38(4)$
$\mathrm{P}(22)$	0.333	0.667	0.167	$4.65(5)$
$\mathrm{F}(11)$	$0.0339(2)$	$0.1018(2)$	$0.01775(6)$	$7.21(9)$
$\mathrm{F}(22)$	$0.4245(4)$	$0.7498(4)$	$0.14954(9)$	$14.1(2)$

Table 2. Selected bond lengths (\AA) and valence angles $\left(^{\circ}\right.$)

Numbers in parentheses are e.s.d.'s in the least significant digits.

Ag	$\mathrm{P}(1)$	$2.674(1)$	$\mathrm{P}(1)$	$\mathrm{C}(131)$	$1.828(4)$
Ag	$\mathrm{P}(2)$	$2.639(2)$	$\mathrm{P}(2)$	$\mathrm{C}(211)$	$1.822(3)$
$\mathrm{P}(1)$	$\mathrm{C}(111)$	$1.821(4)$	$\mathrm{P}(11)$	$\mathrm{F}(11)$	$1.579(3)$
$\mathrm{P}(1)$	$\mathrm{C}(121)$	$1.835(3)$	$\mathrm{P}(22)$	$\mathrm{F}(22)$	$1.534(4)$
$\mathrm{P}(1)$	Ag	$\mathrm{P}(2)$	$109.21(2)$	$\mathrm{C}(111)$	$\mathrm{P}(1)$
Ag	$\mathrm{P}(1)$	$\mathrm{C}(111)$	$\mathrm{C}(1131)$	$102.7(2)$	
Ag	$\mathrm{P}(1)$	$\mathrm{C}(121)$	$111.3(2)$	$\mathrm{C}(121)$	$\mathrm{P}(1)$
$\mathrm{C}(131)$	$101.7(2)$				
Ag	$\mathrm{P}(1)$	$\mathrm{C}(131)$	$119.5(1)$	Ag	$\mathrm{P}(2)$
$\mathrm{C}(211)$	$115.6(1)$				
$\mathrm{C}(111)$	$\mathrm{P}(1)$	$\mathrm{C}(121)$	$103.8(2)$	$\mathrm{C}(211)$	$\mathrm{P}(2)$
$\mathrm{C}(211)$	$102.6(2)$				

$\left.3 \sigma F_{o}^{2}\right) ; R_{\text {merge }}\left(F_{o}\right)=0.017$. Scattering factors, including anomalous dispersion, were taken from International Tables for X-ray Crystallography (1974). All computations were carried out using the SDP/V package of programs (E. A. Frenz \& Associates, Inc., 1985). The structure was solved by direct methods and subjected to full-matrix least-squares refinement. All non-H atoms were refined anisotropically. H atoms were added at calculated positions and then refined freely. $w R=$ $\left\{\left[\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}\right] /\left[\sum w\left(F_{o}\right)^{2}\right]\right\}^{1 / 2}$ was minimized, where $w=\sigma^{2}\left(\left|F_{o}\right|\right)^{-1}$; the final R value was 0.0401 , $w R=0.0492$ and $S=1.194$ for 334 variables. The largest shift/e.s.d. in the final least-squares cycle was $0 \cdot 16$; the maximum residual electron density in the difference Fourier map was $0.745 \mathrm{e}^{-3}$. The molecule and the atomic labeling scheme are shown in Fig. 1.

Final positional and equivalent isotropic thermal parameters are shown in Table 1;* some selected bond distances and angles are listed in Table 2.

Related literature. The crystal structures of $\left[\mathrm{Ag}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ with ClO_{4}^{-}and $\left[\mathrm{SnPh}_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{Cl}, \mathrm{NO}_{3}\right)\right]^{-}$ as anions have been reported (Engelhardt, Pakawatchai, White \& Healy, 1985; Pelizzi, Pelizzi \& Tarasconi, 1984).

[^1]These studies are supported by the National Science Foundation.

References

B. A. Frenz \& Associates Inc. (1985). SDP/V Structure Determination Package, V3.0. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.
Engelhardt, L. M., Pakawatcha, C., White, A. H. \& Healy, P. C. (1985). J. Chem. Soc. Dalton Trans. pp. 125-133.

International Tables for X-ray Crystallography (1974). Vol IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Pelizzi, C., Pelizzi, G. \& Tarascon, P. (1984). J. Organomet. Chem. 277, 29-35.

Acta Cryst. (1989). C45, 1224-1226

Structure of Tricarbonyl(η-cyclopentadienyl) $[(2,3,7,8,12,13,17,18-$ octaethylporphinato)thallio(III)]molybdenum(0)

By P. Richard, A. Zrineh and R. Guilard
Laboratoire de Synthèse et d'Electrosynthèse Organométallique, UA CNRS 33, Faculté des Sciences Gabriel, Université de Bourgogne, 21100 Dijon, France

and A. Habbou and C. Lecomte*
Laboratoire de Minéralogie-Cristallographie, UA CNRS 809, Université de Nancy I, BP 239, 54506 Vandoeuvre les Nancy CEDEX, France
(Received 24 December 1988; accepted 6 February 1989)

Abstract

MoTl}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{~N}_{4}\right)(\mathrm{CO})_{3}\right]\), $\quad[(\mathrm{oep})$ $\left.\mathrm{TlMo}(\mathrm{CO})_{3} \mathrm{Cp}\right], \quad M_{r}=982 \cdot 22$, triclinic, $\quad P \overline{1}, \quad a=$ 12.883 (2),$\quad b=14.021$ (2), $\quad c=15.350$ (2) $\AA, \quad \alpha=$ 59.40 (1) $, \quad \beta=59.98(1), \quad \gamma=67.61$ (1) ${ }^{\circ}, \quad V=$ $2036.6 \AA^{3}, \quad Z=2, \quad D_{x}=1.601 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=$ $0.071073 \AA, \mu=0.52 \mathrm{~cm}^{-1}, \quad F(000)=976, \quad R(F)=$ $0.0214, w R(F)=0.0254, \quad$ GOF $=0.464$ for 6096 reflections. [$\left.(\mathrm{oep}) \mathrm{TlMo}(\mathrm{CO})_{3} \mathrm{Cp}\right]$ has two coordinated metal units, which are linked by a single covalent bond; the Tl-Mo bond distance is 2.829 (1) \AA. The average $\mathrm{Tl}-\mathrm{N}$ distance is $2.294(5) \pm 0.02 \AA$ and the Tl atom lies 1.000 (1) \AA above the four- N -atom plane towards the Mo atom. The average Mo-CO distance is 1.973 (6) $\pm 0.002 \AA$.

Experimental. Crystals were prepared according to Guilard et al. (1988). A black crystal, $0.25 \times 0.32 \times$ 0.20 mm , of [(oep) $\mathrm{Tl} \mathrm{Mo}(\mathrm{CO})_{3} \mathrm{Cp}$] recrystallized from toluene/heptane was mounted on a CAD-4 diffrac-

[^2]0108-2701/89/081224-03\$03.00
tometer. Unit-cell dimensions at room temperature were obtained from accurate angle values of 25 reflections with $10<\theta<22^{\circ}$ using monochromated Mo $K \alpha$ radiation. 7410 reflections were measured up to $(\sin \theta) / \lambda$ $=0.60 \AA^{-1}$ at room temperature $(-15 \leq h \leq 15$, $-16 \leq k \leq 16,0 \leq l \leq 18) ; \overline{2} \overline{4} \overline{5}, \overline{5} \overline{3} \overline{6}, \overline{2} \overline{1} 5$ standard reflections monitored every $2 \mathrm{~h} ; \omega-2 \theta$ scan; scan width $1.0^{\circ}+0.35^{\circ} \tan \theta$; scan speed $v: 0.55<v$ $<1.65^{\circ} \mathrm{min}^{-1}$. No decay was observed and no absorption correction was applied. 6096 reflections [$I \geq 3 \sigma(I)$], corrected for Lorentz and polarization effects, were used to solve the structure. The structure was solved by interpretation of the Patterson map; all non- H atoms were refined anisotropically; H atoms were located at their calculated positions. At convergence ($4 / \sigma$ max. $=0 \cdot 10$ for U_{33} of T1), a residual Fourier map (SHELX76; Sheldrick, 1976) gave a maximum peak of $0.52 \mathrm{e} \AA^{-3}$. The weighting scheme used was $w^{-1}=\sigma^{2}(F)+0.0054 F^{2}$. Atomic scattering factors were taken from SHELX76 and from International Tables for X-ray Crystallography (1974).
© 1989 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom coordinates and complete intramolecular bond lengths and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51750 (22 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 12 HU , England.

[^2]: *Author to whom correspondence should be addressed.

